Violence Detection From ECG Signals: A Preliminary Study
Hany Ferdinando, Liang Ye, Tian Han, Zhu Zhang, Guobing Sun, Tuija Huuki, Tapio Sepp, Esko Alasaarela
Abstract
This research studied violence detection from less than 6-second ECG signals. Features were calculated based on the Bivariate Empirical Mode Decomposition (BEMD) and the Recurrence Quantification Analysis (RQA) applied to ECG signals from violence simulation in a primary school, involving 12 pupils from two grades. The feature sets were fed to a kNN classifier and tested using 10-fold cross validation and leave-one-subject-out (LOSO) validation in subject-dependent and subject-independent training models respectively. Features from BEMD outperformed the ones from RQA in both 10-fold cross validation, i.e. 88% vs. 73% (2nd grade pupils) and 87% vs. 81% (5th grade pupils), and LOSO validation, i.e. 77% vs. 75% (2nd grade pupils) and 80% vs. 76% (5th grade pupils), but have larger variation than the ones from RQA in both validations. Average performances for subject-specific system in 10-fold cross validation were 100% vs. 93% (2nd grade pupils) and 100% vs. 97% (5th grade pupils) for features from the BEMD and the RQA respectively. The results indicate that ECG signals as short as 6 seconds can be used successfully to detect violent events using subject-specific classifiers.